Amphenol Broadband Solutions

Cable IOI Training Series

Cable Math

dBmV	mV
$d B=10 \times \log _{10}(\mathrm{P} 2 / \mathrm{P1})$	Metric system
10^{2}	$2+2=?$

Cable Math Learning Objectives

- Metric System
- Powers of 10
- Logarithms
- dB and dBmV
- Cable Loss
- HFC and Drop Caculations

Metric System

- Metric system is used in most of the world, except the USA
- Measures volume(liters), =weight(kilograms) and distance(meters)
- Smaller or larger units of measure are all based on the power of 10

- Only one basic unit for distance, the meter PlMator
- I Kilometer $=\mathrm{I}, 000$ Meters $=10,000$ decimeters $=1,000,000$ centimeters
- \mid Mile $=1,760$ Yards $=5,280$ Feet $=63,360$ Inches

Powers of 10

- Powers of 10 is used in the decimal system that we use everyday
- 10 is the basic number in our numbering system, just like the meter is the basic unit of measurement in the metric system
- Express very large or small numbers in a compact and easy to calculate way

```
- \(10^{2^{2}}(10\) Exponent squared \()=10 \times 10=100\)
Base
\({ }^{\text {Base }} 10^{3}(10\) cubed \()=10 \times 10 \times 10=1,000\)
- \(10^{6}=10 \times 10 \times 10 \times 10 \times 10 \times 10=1,000,000\)
- \(10^{9}=10 \times 10 \times 10=1,000,000,000\)
```


Powers of 10

- Numbers less than zero can be expressed using negative powers of 10
- $10^{-3}=001$
- $10^{-6}=000001$
- $10^{-9}=000000001$

Powers of 10

| Power
 of 10 | Number |
| :--- | ---: | :--- | :--- | :--- |\quad Decimal | Metric |
| :---: |
| Prefix |\quad| Metric |
| :---: |
| Symbol |

Metric System

Metric	Metric	Common
Prefix	Symbol	Nomenclature
Tera	T	$\mathrm{TB}=$ Terabyte
Giga	G	$\mathrm{GHz}=$ Gigahertz
Mega	M	$\mathrm{MHz}=$ Megahertz
Kilo	K	$\mathrm{KHz}=$ Kilohertz
Hecto	H	
Deca	D	
deci	d	$\mathrm{dB}=$ decibel
centi	c	$\mathrm{cm}=$ centimeter
milli	m	$\mathrm{mV}=$ millivolt
micro	μ	$\mu \mathrm{V}=$ microvolt
nano	n	$\mathrm{nm}=$ nanometer
pico	P	$\mathrm{pf}=$ picofarad

Metric System

$$
\begin{array}{r}
\text { I Kilometer }=1,000,000 \text { Meters }=0.62 \text { Miles } \\
\text { I Meter }=3.28 \text { Feet } \\
\text { I centimeter }=.01 \text { meters }=0.39 \text { Inches }
\end{array}
$$

$$
0 \mathrm{dBmV}=1 \text { millivolt }=0.001 \text { volt } \square
$$

$$
32 \mathrm{~GB}=32 \text { Gigabyte }=32,000,000,000 \text { byte's }
$$

Metric System

$$
\begin{array}{lrr}
32,400 \mu \mathrm{HV} \text { (microvolt) } & 32,400 & =32.4 \mathrm{mV} \\
0.7 \mathrm{~V} \text { (Volts) } & 0.700 & =700 \mathrm{mV} \\
860 \mathrm{mV} \text { (millivolts) } & & =860 \mathrm{mV} \\
& & =1,592.4 \mathrm{mV}
\end{array}
$$

Logarithms

- The logarithm (log) is the number to which the base must be raised in order to produce that number
- Logs express large numbers simply
- Simplifies calculations because the addition and subtraction of logarithms is equivalent to multiplication and division
- Logarithms can be expressed as powers of any number, most cable applications uses the power of 10
- Used for decibels, gain, loss, signal levels, carrier-to-noise and noise figures

Logarithms

I Kilometer
= 1,000 Meters
$=10 \times 10 \times 10$
$=10^{3}$
$=\log 3$

Logarithms

$$
\begin{aligned}
& 10098=10 g 4 \\
& 100,000=\log 5 \\
& 1,000000=10 \\
& 1096 \\
& 1,000,000,000=\log 9 \\
& 1,000,000,000,000=\log 12 \\
& \log -3=, 001 \\
& \log -6=, 000,001 \\
& \log -9=, 000,000,00 \mid
\end{aligned}
$$

Logarithms

593,766,821,6382
 8.77

593,7\%57821.6382									
1)	mc	m+	m-	mr	c	+/	\%	\div
$2^{\text {nd }}$	x^{2}	x^{3}	x^{y}	e^{x}	10^{x}	7	8	9	\times
$\frac{1}{x}$	$\sqrt[3]{x}$	$\sqrt[3]{x}$	$\sqrt[y]{x}$	In	$\log _{10}$	4	5	6	-
x!	sin	cos	tan	e	EE	1	2	3	+
Rad	sinh	cosh	tanh	π	Rand	0			$=$

Decibels

Decibel is one tenth of a bel and is a ratio that compares any two power or voltage levels such as input level to output level, video carrier to noise floor, etc

bel

bel

Decibels

The bel was found to be too large to use for cable communication applications so the decibel, one tenth of a bel, was established

Written as dB

Power	Value Ratio	Value in in Bels I to I
2 to $~$	0	0
10 to $~$	0.3	3
100 to $~$	1	10
1,000 to $~$	2	20
I	3	30

Decibels

- dB represents the logarithm of a ratio of two signal power or voltage levels
© dB is a relative measurement
- $\mathrm{dB}=10 \times \log _{10}(\mathrm{P} 2 / \mathrm{PI})$, Power
- PI = Input
- P2 = Output
- $\mathrm{dB}=20 \times \log _{10}(\mathrm{~V} 2 / \mathrm{VI})$, Voltage
- VI = Input
- $V 2$ = Output

Decibels

Decibels

10 Watts 5 Watts

$$
\begin{aligned}
& \mathrm{dB}=10 \times \log _{10}(\mathrm{P} 2 / \mathrm{PI}) \\
& \mathrm{dB}=10 \times \log _{10}(5 / \mathrm{IO}) \\
& \mathrm{dB}=10 \times \log _{10}(0.5) \\
& \mathrm{dB}=10 \times-0.30 \mathrm{I} \\
& \mathrm{~dB}=-3.0 \mathrm{I} \text { Loss }
\end{aligned}
$$

dBmV

Very small and cumbersome numbers 3.1623 mV

dBmV

Experiments were made in the early days of television to determine the minimum signal strength needed to produce a noise free picture

I millivolt was established as the minimum signal level needed to produce a good noise-free video picture

Imilli-volt measured across 75 ohms equals 0 dBmV , this is the standard we use today

dBmV

dBmV is a reference related to voltage and is an absolute measurement

dBmV

dBmV is a reference related to voltage and is an absolute measurement

$\overline{T_{F} C}$

dB \& dBmV

$$
\begin{aligned}
& 3.1623 \mathrm{mV} \text { in } \\
& 2.1135 \mathrm{mV} \text { out }
\end{aligned}
$$

$d B=20 \times \log (2.1135 / 3.1623)$
$\mathrm{dB}=20 \times \log (.67)$
$d B=20 \times(-.17)$
$\mathrm{dB}=-3.4$

dB \& dBmV

dB \& dBmV

dB \& dBmV

If you can measure it, it's "dBmV"
Absolute signal measurement $0 \mathrm{dBmV}=1 \mathrm{mV}$ across 75 ohms

If you have to calculate it, it's "dB"
Ratio between two power or voltage levels Represents Gain or Loss

Cable Attenuation

One of the essential steps in the troubleshooting process is how to calculate the amount of attenuation that a length of coaxial cable has

To determine the loss you need to know 3 things:
I. Type of cable
2. Frequency used
3. Cable length

Cable Attenuation

Cable manufactures provide cable loss tables that indicate the loss of cables in dB per 100 feet at different frequencies

Cable Loss Per 100 Feet

MHz	RG-59	RG-6	RG-II	0.625	0.875
5	0.77	0.58	0.38	0.13	0.09
45	I .75	1.39	0.89	0.4	0.29
55	I .88	1.54	0.96	0.45	0.32
330	4.5	3.74	2.35	1.14	0.82
450	5.3	4.4	2.75	1.35	0.97
550	5.9	4.9	3.04	1.5 I	1.09
750	6.96	5.54	3.65	1.79	1.29
870	7.54	6.1 I	4.06	1.95	1.41
1000	8.09	6.55	4.35	2.11	1.53

Cable Attenuation

How to calculate cable loss:
I. Use the cable loss table to find the loss thru 100 feet of cable

- loss through RG-6 cable at $550 \mathrm{MHz}=4.9 \mathrm{~dB}$

2. Divide the length of the cable by 100

- 140^{\prime} (cable length) $\div 100=1.4$ (the multiplier)

3. Multiply the result from step 2, by the cable loss in step I

- $1.4 \times 4.9=6.86 \mathrm{~dB}$

Cable Attenuation

Example I, calculate the loss through II8 feet of RG-6 cable at 870 MHz
I. Using the cable loss table find the loss thru 100 feet of RG-6 cable at 870 MHz
-6.1I dB
2. Divide the length of the cable by 100

- $118 / 100=1.18$

3. Multiply I.I8 by the cable loss per 100 feet (6.II)

- $1.18 \times 6.1 I=7.2 \mathrm{I} \mathrm{dB}$ cable attenuation

Cable Attenuation

Example 2, calculate the loss through 56 feet of RG-6 cable at 45 MHz
I. Using the cable loss table find the loss thru 100 feet of RG-6 cable at 45 MHz - 1.39 dB
2. Divide the length of the cable by 100

- $56 / 100=0.56$

3. Multiply 0.56 by the cable loss per 100 feet (I.39)

- $0.56 \times 1.39=0.78 \mathrm{~dB}$ cable attenuation

HFC Plant

HFC Plant

Distribution Feeder

HFC Plant

Taps

Taps

Taps

Taps

23, 20, I7, I4, I I, 8 Values

HFC Plant

HFC Plant Return

Levels in the Home Forward and Return

Operating Windows

Use the following as average guidelines to calculate proper operating levels. Each system/operator will have different standards to follow but the math is the same

How is forward signal loss determined?

- Output levels at tap
* Length of drop and attenuation
- Passive devices in home
- House cable attenuation
- Active devices in home

Forward Exercise

		Analog	Digital
		55 MHz	750 MHz
Distribution Plant	R - 17	10 dBmV	15 dBmV
Drop = 200' of RG6	(@) $55 \mathrm{MHz}-1.5 \mathrm{~dB} / \mathrm{I} 00^{\circ}$ @ $750 \mathrm{MHz}-5.5 \mathrm{~dB} / 100^{\circ}$	-3dB	-IIdB
		7 dBmV	4 dBmV
Data Splitter			
Amplifier/Gain			
Splitter = 2 Way		-3.5dB	-3.5dB
	\bigcirc	3.5 dBmV	0.5 dBmV
Outlet Cable $=100$ 'of RG6		-I.5dB	-5.5dB
CPE		2.0dBmV	-5.0dBmV

Forward Exercise

Forward Exercise

How is return signal loss determined?

- Output level of device
- Cable attenuation
- Passive loss
- Active gain
- Tap value
- Tap thru put loss
- Feeder cable attenuation
- Input requirement at first active

HOLLAND

Return Exercise

Cable Math Summary

- Metric prefix's are used for system measurements
- Powers of 10 tells us how may times we have to multiply IO by itself
- Logarithms express large numbers simply
- dB represents the logarithm of a ratio of two signal power or voltage levels
(3 dBmV is an absolute signal measurement where 0 dBmV $=1 \mathrm{mV}$ across 75 ohms

Amphenol Broadband Solutions

Thank You For Attending This Training On

Cable Math

For Additional Training Topics See Our Website At
www.amphenolbroadband.com

